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ABSTRACT 

Recent earthquakes affecting urban areas have clearly demonstrated 
the vulnerability of urban building stock to ground motions. A large number 
of engineered buildings designed and constructed using modern techniques 
have been damaged. Several modern aseismic design techniques using base 
isolation have been proposed in published literature, some of which have 
also been implemented. Most isolation techniques have been found 
ineffective for near-source ground motions. A recently proposed sliding 
isolation system, known as variable frequency pendulum isolator (VFPI) has 
unique characteristics that help overcome the limitations of traditional 
isolation system for near source ground motions. The VFPI incorporates 
both isolation as well as restoring force mechanisms and has additional 
advantages due to response-dependent variable frequency of oscillation. 
Isolator parameters of VFPI can be chosen to obtain the desired rate of 
time-period variation as well as the initial time period. 

In this paper, behaviour of structures isolated using VFPI subjected to 
near source ground motions has been investigated. It is found that while 
traditional isolation systems are of limited effectiveness in reducing the 
response of structures, structures isolated with VFPI show significant 
reduction in response. 
 
 
1. INTRODUCTION 

Use of base isolation systems has emerged as a very effective 
technique for aseismic design of structures. In base isolation technique, a 
flexible layer (or isolator) is placed between the structure and its foundation 
such that relative deformations are permitted at this level. Due to flexibility 
of the isolator layer, the time period of motion of the isolator is relatively 
long; resulting in shift of fundamental period of the structure away from the 
predominant periods of ground excitation. Extensive review of base 
isolation systems and their applicability is available in published literature 
(Buckle and Mayes, 1990; Kelly, 1986, 1993; Naeim and Kelly, 1999). 

Practical isolation devices typically also include energy dissipating 
mechanism in order to reduce deformations at the isolator level. Friction 
type base isolators have been found to be very effective in reducing 
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structural response (Mostaghel et al., 1983). The performance of friction 
isolators is relatively insensitive to variations in the frequency content and 
amplitude of the input excitation, making performance of sliding isolators 
very robust. Pure-Friction (PF) system, consisting of horizontal sliding 
surface, may experience large sliding and residual displacements, which are 
often difficult to incorporate in structural design. An effective mechanism to 
provide restoring force by gravity has been utilised in Friction Pendulum 
System (FPS) (Zayas et al., 1987). In this system, the sliding surface takes a 
concave spherical shape so that the sliding and re-centring mechanisms are 
integrated in one unit.  

The authors have recently developed a new isolation device called the 
Variable Frequency Pendulum Isolator (VFPI) that incorporates the 
advantages of both the FPS and PF isolators (Pranesh and Sinha, 1998, 
2000). The most important properties of this system are: (1) its time period 
of oscillation depends on sliding displacement, and (2) its restoring force 
has a bounded value and exhibits softening behaviour. Recent investigations 
systems have shown VFPI to be very effective for a variety of excitation and 
structural characteristics.  

The study of structural response subjected to near-field ground 
motions has great significance since near-field ground motions are 
characterised by pulse type excitations having narrow range of frequencies. 
Behaviour of most base isolated structures subjected to near-field ground 
motions is not found satisfactory. In the present paper the performance of 
VFPI for aseismic design of multi-degree-of-freedom (MDOF) structures 
subjected to near-field ground motions has been investigated. The 
effectiveness of VFPI in comparison with the other frictional base isolation 
systems has been examined. 

 
2. VFPI DESCRIPTION 

Consider the motion of a rigid block of mass m sliding on a smooth 
curved surface of defined geometry, y f  as shown in Fig. 1. At any 
instant the horizontal restoring force due to weight of the structure is given 
by 

x= ( )

f mg dy
dxR =  (1) 

Assuming that the restoring force is mathematically represented by an 
equivalent non-linear mass-less horizontal spring, the spring force can be 
expressed as the product of the equivalent spring stiffness and the 
deformation. Further the stiffness can be expressed as product of mass and 
square of isolator frequency, i.e., 

f m xR b= ω 2( )x  (2) 
Here, ω b x( )  is the instantaneous isolator frequency, and depends solely on 
the geometry of sliding surface. The geometry of VFPI has been derived 
from the geometry of an ellipse so as to get sliding isolator with desired 
properties (Pranesh, 2000). The expression for geometry of sliding surface 
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of VFPI is expressed as 
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where sgn(x) is the signum function which assumes a value of +1  for 
positive sliding displacement and −1 for negative sliding displacement.  

The slope at any point on this sliding surface is given as 
dy
dx

bd
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To simplify the notations, a non-dimensional parameter r x  is 
used.  By substituting r and the initial frequency 

x d= sgn( )
ω I = gb d2 2  in (4), and 

combining with (1) and (2), the isolator frequency at any sliding 
displacement can be expressed as 
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In the above equations, parameters b and d completely define the 
isolator characteristics. It can be observed that the ratio b d  governs the 
initial frequency of the isolator.  Similarly, the value of 

2

1  determines the 
rate of variation of isolator frequency, and this factor has been defined as 
frequency variation factor (FVF). The variation of oscillation frequency of a 
typical VFPI with respect to the sliding displacement is shown in Fig. 2(a). 
For comparison purposes, the oscillation frequency of FPS with same initial 
frequency has also been shown, which is found to be almost constant. From 
this plot it is seen that the oscillation frequency of VFPI sharply decreases 
with increasing sliding displacement and asymptotically approaches zero. 
The force-deformation curves for example FPS and VFPI are shown in Fig. 
2(b). It can be observed that the isolator force in VFPI first increases to 
reach its maximum value, and later slowly decreases so as to asymptotically 
approach the frictional force at large sliding displacement. This is an 
important property of VFPI, which limits the force transmitted to the 
structure. 

d

  
3. MATHEMATICAL FORMULATION 

Consider an N-storey shear structure isolated by sliding type isolator. 
The motion of the structure can be in either of two phases: non-sliding phase 
and sliding phase. In non-sliding phase, the structure behaves like a 
conventional fixed base structure since there is no relative motion at the 
isolator level. When the frictional force at the sliding surface is overcome, 
there is relative motion at the sliding surface, and the structure enters sliding 
phase. The total motion consists of a series of alternating non-sliding and 
sliding phases.  
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3.1  Non-sliding Phase 

In non-sliding phase the structure behaves as a fixed-base structure, 
since there is no relative motion between the ground and base mass.  The 
equations of motion in this phase are: 

M x C x K x M r0 0 0 0 0 0 0 0&& & &&+ + = − xg  (6) 
and 

xb = constant;  (7) & &&x xb b= = 0
where, M0, C0 and K0 are the mass, damping and stiffness matrices of the 
fixed-base structure, respectively, x  is the vector of 
displacements of the degrees of freedom (DOFs) of the superstructure 
relative to the base mass (excluding the DOF of base mass), x

1 2[ , , , ]TNx x x=0 L

b is the 
displacement of the base mass (mb) relative to the ground, xg is the ground 
displacement, r0 is the influence coefficient vector and over-dot indicates 
derivative with respect to time. Since the base mass does not move relative 
to the ground, the velocity and acceleration of the base relative to the ground 
are zero. However the sliding displacement may be non-zero. The structure 
is classically damped in this phase and hence (6) can be readily solved by 
usual modal analysis procedures (Clough and Penzien, 1993). 
 
3.2  Initiation of Sliding Phase 

( ) mmm µω ≥+∑ 2 (8) ( ) gxxxmxx t

N

i
bbtgbgii ++

=1
&&&&

When the structure is subjected to base excitation, it will remain in 
non-sliding phase unless the frictional resistance at the sliding surface is 
overcome.  Therefore the condition for the beginning of sliding phase can be 
written as 

 
3.3  Sliding Phase 

Mx C K+ + = − (9) x x Mr r&& & && −xg fµ

Once the inequality (8) is satisfied the structure enters sliding phase 
and the degree of freedom (DOF) corresponding to the base mass also 
experiences motion. The equations of motion are now given by 

where, M, C, K are the modified mass, damping and stiffness matrices of 
order N+1, r is the modified influence coefficient vector and µ f is the 
frictional force as given below. 
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Equation (9) can be solved numerically. But for large size problems the 
computational effort is large and the analysis does not provide proper 
insight into the behaviour of the structure. In view of this and the non-
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classical nature of damping, complex modal analysis is used in the present 
investigations. 
 
3.4  Direction of Sliding 

The direction of sliding depends on the signum function that in turn 
depends on the forces acting on the structure at the end of the previous non-
sliding phase. Once inequality (8) is satisfied, the structure starts sliding in a 
direction opposite to the direction of the sum of total inertia force and 
restoring force at the isolator level. So, we have 
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The signum function remains unchanged in a particular sliding phase. The 
end of a sliding phase is governed by the condition that the sliding velocity 
of the base mass is equal to zero, i.e., 

&xb = 0  (12) 
Once the sliding velocity is zero, the structure may enter a non-sliding phase, 
reverse its direction of sliding, or have a momentary stop and then continue 
in the same direction. If inequality (8) is satisfied at the same instant of time 
when the sliding velocity is zero, it shows that there is a sudden stop at that 
instant. 
 
4. ENERGY BALANCE 

Base isolators reduce structural response by filtering the seismic 
excitations and by dissipating energy thereby reducing the energy that needs 
to be dissipated by the structure. Often it is very difficult to decide a proper 
trade-off between structural deformations and isolator displacements for 
determination of isolator properties. The energy quantities are convenient to 
consider since they involve all the response quantities and hence represent 
overall response of the structure.  So, the energy quantities can represent the 
isolator performance in a more unified manner and can be used to decide the 
overall performance of the isolator. 

The energy balance at any instant can be derived by considering the 
total work done by all conservative and non-conservative forces up to that 
instant. The differential work done by all the forces during a small 
deformation of the structure dx0 is calculated, and then integrated to get the 
total work done. The final expression for the energy balance is found to be 
(Pranesh, 2000) 
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Equation (13) is similar to the absolute energy equation derived for the 
conventional MDOF structure in published literature, except for the 
additional terms involving the potential energy due to rising of the structure 
along the curved surface (third term in (13)) and the non-conservative 
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energy term due to friction (sixth term in (13) (Uang and Bertero, 1990).  
There is no energy dissipation due to sliding friction during the non-sliding 
phase. Equation (13) can be written in short as 

k r sE E E E E Eξ µ+ + + + = i  (14) 
where Ek is the sum of absolute kinetic energies of all the masses, Er and Es 
are the restorable potential energy due to rising of the structure along the 
sliding surface of the isolator and elastic energy due to structural 
deformations, respectively. E ξ  and E µ  are the energy dissipated due to 
structural damping and sliding friction respectively. As the sum of frictional 
force and the restoring force is identical to the total inertia force, the term Ei 
on RHS is the absolute input energy. 
 
5. RESPONSE OF EXAMPLE STRUCTURE 

The effectiveness of VFPI to reduce response of an example MDOF 
structure subjected to near-field earthquake excitations has been presented 
in this section. The example structure is a five-storey shear structure. The 
example building is represented as a lumped mass model with equal lumped 
mass of 60080 kg and equal storey stiffness of 112600 kN/m for each floor. 
The frequencies and modal properties for the fixed-base and isolated 
structures are given in Table 1. Since the natural frequencies of a structure 
isolated by VFPI change continuously with the isolator sliding displacement, 
the frequencies shown in Table 1 indicate the upper bound on the 
frequencies when the isolator displacement is zero. 

Table 1: Modal properties of fixed-base and isolated example structures. 
Mode Isolator 1 2 3 4 5 

Fixed – Freq. (Hz) - 1.96 5.72 9.02 11.59 13.22

Eff. Modal Mass (%)  - 87.95 8.72 2.42 0.75 0.16

Isolated – Freq. (Hz) 0.49 3.64 6.92 9.76 11.93 13.31

Eff. Modal Mass (%) 99.93 0.07 0.00 0.00 0.00 0.00

The example structure is analysed for ten near field ground motions. 
The details of the ground motions are presented in Table 2. These ground 
motions represent a wide range of recorded ground motions having different 
peak ground acceleration (PGA), frequency composition and duration. 
Using the formulation presented in the paper, time history analysis is carried 
out for the structure. The VFPI chosen in this study has an initial isolator 
time period of 2.0 s and FVF equal to 5.0 per m. The corresponding values 
of isolator parameters b and d are 0.04 m and 0.20 m, respectively. To 
investigate the effectiveness of VFPI, the responses are compared with those 
of structure isolated with FPS and PF isolators. The FPS has been chosen 
with radius of 1.0 m so that its time period is around 2.0 s (equal to the 
initial period of the example VFPI). Coefficient of friction is assumed to be 
equal to 0.02. The structural damping is assumed as 5% of critical for all 
modes. 
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Table 2: Details of earthquake records used in this study. 
Sr. 
No. 

Name of 
earthquake Magnitude Distance of 

Source (km) 
PGA 
(g) 

Duration 
(sec) 

1. Tabas, 1978 7.4 1.2 0.900 50 

2. Loma Prieta, 
1989, Los Gatos 7.0 3.5 0.718 25 

3. Loma Prieta, 
1989, Lex. Dam 7.0 6.3 0.686 40 

4. C. Mendocino, 
1992, Petrolia 7.1 8.5 0.638 60 

5. Erzincan, 1992 6.7 2.0 0.432 21 
6. Landers, 1992 7.3 1.1 0.713 50 

7. Nothridge, 
1994, Rinaldi 6.7 7.5 0.890 15 

8. 
Nothridge, 
1994, Olive 
View 

6.7 6.4 0.732 60 

9. Kobe, 1995 6.9 3.4 1.088 60 

10. Kobe, 1995, 
Takatori 6.9 4.3 0.786 40 

The main response quantities of interest are acceleration of top storey 
and sliding displacement of isolator. Time-history plots of response of the 
example structure subject to Northridge (Rinaldi) 1994 excitation are shown 
in Fig. 3. The maximum response values are also shown. It is seen from Fig. 
3(a) that there is substantial reduction in the maximum acceleration for 
structure isolated by VFPI, when compared to other isolation systems. These 
plots clearly demonstrate the effectiveness of VFPI in comparison with 
conventional FPS and PF system. From Fig. 3(b), it can be observed that the 
sliding displacements in case of VFPI may be more than PF system since 
the isolator force in VFPI can act either as restoring or driving force 
depending on the direction of motion, whereas in the PF system the constant 
frictional force always opposes the motion. However the residual 
displacements in VFPI are very small and are close to those of FPS, which 
clearly shows the effectiveness of the restoring mechanism. From these 
response characteristics, it is therefore found that VFPI retains the main 
advantages of both FPS and PF isolators. 

The average, maximum and minimum response of the example 
structure subjected to ten near field ground motions has been presented in 
Table 3 for the three isolation systems. From these results it is seen that the 
maximum acceleration response of FPS is very large when compared to 
VFPI and PF systems for most of the excitations while the maximum sliding 
displacements in VFPI are large. However residual displacements for VFPI 
are very small and similar to that for PF system. 

The energy quantities are better representation of structure response. 
Table 4 shows the input energy and conservative energy for the example 
system subjected to different ground motions. Input energy is a measure of 
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effectiveness of isolation and conservative energy is the energy transmitted 
to the structure. The difference between the two is the energy dissipated 
through structural deformations. From the Table 4 it is observed that the 
input energy and conservative energy in case of FPS are both very large 
compared with FPS and PF systems. This shows that VFPI retains the 
effectiveness of PF system while significantly reducing the sliding and 
residual displacement when subjected to near-field ground motions. 

Table 3: Response of example system for various near-field ground motion 
records. 

Maximum 
Structure Acc. (g) 

Maximum Sliding 
Displacement (m) 

Residual 
Displacement (m) 

 

VFPI FPS PF VFPI FPS PF VFPI FPS PF 
Ave. 0.184 2.515 0.168 1.197 0.650 0.757 0.440 0.067 0.465 
Max. 0.222 13.33 0.200 2.404 0.989 1.037 2.251 0.284 0.834 
Min. 0.144 0.364 0.134 0.470 0.305 0.528 0.000 0.000 0.078 

 
Table 4: Energy characteristics of example system subjected to various 

near-field ground motion records. 
Input Energy (×104 N-m) Conservative Energy (×104 N-m)  
VFPI FPS PF VFPI FPS PF 

Ave. 30.47 270.08 23.36 4.74 177.87 1.39 
Max. 46.60 721.80 38.84 14.97 516.00 5.08 
Min. 17.75 114.80 11.66 1.19 28.25 0.47 

 
 
 
6. CONCLUSIONS 

The effectiveness of Variable Frequency Pendulum Isolator (VFPI) 
for vibration control of MDOF systems subjected to near-field ground 
motions has been investigated in this paper. A five-storey shear structure has 
been analysed for ten different near-field ground motions. From these 
investigations it is found that the VFPI is very effective in reducing the 
response of structures when compared to the FPS and PF isolators. The 
VFPI reduces the response substantially without losing the restoring 
capability thereby combining the advantages of both FPS and PF isolators.  

Based on investigations of response of MDOF systems isolated by 
VFPI, the following conclusions can be drawn. 
1. The VFPI is very effective in reducing the response of structures 

subjected to a large variety of near-field ground excitations. The 
performance of VFPI is found to be robust and superior to that of FPS 
and PF isolation systems. 

2. VFPI includes effective energy dissipation as well as restoring 
mechanism. 
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Figure 1: Free body diagram of sliding surface 
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Figure 2: Frequency and restoring force characteristics of VFPI and FPS 
(a) Frequency ratio, (b) Normalized isolator force. 
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Figure 3: Partial time-history of response of structure subjected to 1994 

Northridge (Rinaldi) ground motions. 
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